Increasing/Decreasing

1	Durality		- f	*··· ··· · · · · · · ·	f
	Draw a	nictire	or an	increasing	TUNCTION
÷.	Diawa	picture	or un	inci cusing	runction.

2. Draw 3 tangent lines to your function.

3. What do these tangent lines have in common?

4. If a function is increasing, then the ______ of the function is ______.

5. Use a ______ to find where the ______ is ______.

6. Draw a graph of a decreasing function.

7. Draw 3 tangent lines to the function.

8. What do these 3 tangent lines have in common?

9. If a function is decreasing, then the ______ of the function is ______.

10. Use a ______ to find where the ______ is ______.

Relative Max/Min

1. Draw a function with a relative min and indicate the relative min with an arrow.

2. To the left of the min, the function is ______, so the derivative is ______.

3	To the right of the min, the function is	, so the derivative is
---	--	------------------------

4. At the min, the tangent line is _____, so the derivative is _____.

5. Use a ______ to find the relative min.

6. Draw a function with a relative max and indicate the relative max with an arrow.

7. To the left of the max, the function is ______, so the derivative is ______.

8. To the left of the max, the function is ______, so the derivative is ______.

9. At the max, the tangent line is ______, so the derivative is ______.

10. Use a ______ to find the relative max.

Concave Up/Concave Down

1. Draw a graph of a function that is concave up.

2. Draw a series of tangent lines.

3. What is the trend of the tangent lines as you go from left to right?

4. If the slopes of the tang	ent lines are	, then the derivative o	_, then the derivative of the slopes of the	
tangent lines is	Therefore the	is	•	

5. Use a ______ to determine where the ______ of the function is ______.

6. Draw a graph of a function that is concave down.

7. Draw a series of tangent lines.

·-----•

8. What is the trend of the tangent lines as you go from left to right?

9. If the slopes of the tangent lines are ______, then the derivative of the slopes of the tangent lines is ______. Therefore the ______ is _____.

10. Use a ______ to determine where the ______ of the function is